

CIRP – SMS Steering Model Workshop

ADCIRC – Overview and Model Features

Joannes J. Westerink – University of Notre Dame
Rick A. Luettich – University of North Carolina at Chapel Hill
Randy Kolar – University of Oklahoma at Norman
Clint Dawson – University of Texas at Austin

ADCIRC Overview

- Forecast water surface elevations and currents in coastal oceans, estuaries, lakes and rivers
- Specifically solve for "long wave" circulation which assumes that horizontal scales of motion are greater than the vertical scales of motion
- Applications
 - Coastal inundation due to tides and hurricanes
 - Navigation
 - Sediment movement
 - Pollutant transport
 - Fisheries

ADCIRC Overview

- ADCIRC is a highly developed state-of-the-art computer program for solving the equations of motion for a moving fluid on a rotating earth
- ADCIRC can be run either as a two-dimensional depth integrated (2DDI) model or as a three-dimensional (3D) model
- In either case, elevation is obtained from the solution of the depth-integrated continuity equation in Generalized Wave-Continuity Equation (GWCE) form. Velocity is obtained from the solution of either the 2DDI or 3D momentum equations
- ADCIRC can be run using either a Cartesian or a spherical coordinate system

2DDI Governing Equations

- Formulate conservation of mass and momentum to describe the physics.
- Continuity equation

$$\frac{\partial \varsigma}{\partial t} + \frac{1}{R\cos\phi} \left(\frac{\partial UH}{\partial \lambda} + \frac{\partial VH\cos\phi}{\partial \phi} \right) = 0$$

 The momentum equations have been formulated using the traditional hydrostatic pressure and Boussinesq approximations

2DDI Governing Equations

Conservation of momentum equations

$$\frac{\partial UH}{\partial t} + \frac{1}{R\cos\phi} \left(\frac{\partial UUH}{\partial \lambda} + \frac{\partial UVH\cos\phi}{\partial \phi} \right) - \left(\frac{U\tan\phi}{R} + f \right) VH = -\frac{H}{R\cos\phi} \frac{\partial}{\partial \lambda} \left[\frac{p_s}{\rho_0} + g(\varsigma - \alpha\eta) \right] + M_{\lambda} + D_{\lambda} + \frac{\tau_{s\lambda}}{\rho_0} - \frac{\tau_{b\lambda}}{\rho_0}$$

$$\frac{\partial VH}{\partial t} + \frac{1}{R\cos\phi} \left(\frac{\partial VUH}{\partial \lambda} + \frac{\partial VVH\cos\phi}{\partial \phi} \right) - \left(\frac{U\tan\phi}{R} + f \right) UH =
- \frac{H}{R} \frac{\partial}{\partial \phi} \left[\frac{p_s}{\rho_0} + g(\varsigma - \alpha\eta) \right] + M_{\phi} + D_{\phi} + \frac{\tau_{s\phi}}{\rho_0} - \frac{\tau_{b\phi}}{\rho_0}$$

2DDI Governing Equations

- Basic equations established by Laplace in 1775
- Cannot solve analytically for most problems of engineering interest
- Numerical Solutions → Convert partial differential equations to algebraic equations at discrete points
 - 1970 \rightarrow first numerical solutions \rightarrow 50 discrete points
 - 1980 \rightarrow 250 discrete points
 - 2000 \rightarrow 1,000,000 discrete points

ADCIRC Forcing Features

- ADCIRC accommodates the following body forces
 - Gravity
 - Tidal potential
 - Earth load/self attraction tide
- ADCIRC can be forced on the boundaries using
 - Elevation boundary condition
 - Normal flow boundary conditions
 - Surface stress boundary conditions
 - Atmospheric pressure

ADCIRC Forcing Features

- ADCIRC boundary conditions include:
 - Specified elevation (harmonic tidal constituents or time series)
 - Specified normal flow (harmonic tidal constituents or time series)
 - Zero normal flow
 - Slip or no slip conditions for velocity
 - External barrier overflow out of the domain
 - Internal barrier overflow between sections of the domain
 - Surface stress (wind and/or wave radiation stress)
 - Atmospheric pressure
 - Outward radiation of waves (Sommerfeld condition)

ADCIRC Features

- Cartesian or spherical coordinates
- 2DDI/3D (stress or velocity based)
- Nonlinear or linear
- Modularity, Options Toggle On/Toggle Off via Input File
- Full wetting/drying elements
- Barrier elements (e.g. levees)
- Conduits and porous barriers
- Harmonic analysis ("on the fly")
- Cold or hot starts
- Well Documented, Web Served, HTML Users Manual

ADCIRC Solution Strategy

- Apply GWCE based reformulation of the governing equations prior to any numerical discretization
- GWCE = Generalized Wave Continuity Equation
 - Manipulation of governing Shallow Water Equations (SWE)
 - Contains numerical parameter τ_0 which chooses balance between the primitive continuity and the wave continuity equations

ADCIRC Solution Strategy

Generalized Wave Continuity Equation

$$GWCE \equiv \frac{\partial}{\partial t} (PCE) - \nabla \cdot (CME) + \tau_0 (PCE) = 0$$

- The full primitive solution leads to a folded dispersion curve
 - Low wavenumber (long wave) physical wave
 - High wavenumber (short wave) spurious wave (noise)
- The use of the GWCE instead of the primitive continuity equation solved in conjunction with the momentum equations, yields a monotonic dispersion curve
 - Only a low wavenumber (long wave) physical wave
 - Monotonic dispersion relationship prevents generation of spurious oscillations

GWCE Parameter Selection

ADCIRC Solution Strategy

- Parameter Ranges
 - $\tau_0 = 0 \rightarrow$ Pure Wave Equation
 - τ_0 = infinity \rightarrow Primitive Equation
- Effect of parameter selection
 - τ_0 too low \rightarrow Poor local mass conservation
 - \mathcal{T}_0 too high \rightarrow Folded dispersion curve \triangle spurious modes
- Correct selection of \mathcal{T}_0 range is related to the local frictional balance

ADCIRC Solution Strategy

- Accurate solutions require discrete points to be closely spaced where the solution varies rapidly
- ADCIRC's Finite Element based solution strategy allows for a very large numbers of discrete points to be placed in a highly flexible unstructured manner
 - Provide localized refinement to the degree required improving accuracy while minimizing computational cost
 - Allows the definition of large domains to simplify the specification of boundary conditions and to improve the accuracy of the results due to improved exchange processes

ADCIRC Domain/Grid Design

- ADCIRC is designed for a Large Domain / Locally Refined Grid Strategy
- Large Domains with open ocean boundaries in the deep ocean greatly simplify the task of boundary condition specification
 - Response in deep waters is significantly simpler than on the shelf and therefore simpler to specify as a boundary condition
 - Any errors in providing dynamically correct boundary conditions are more readily absorbed in the computation
 - Nested grid problems in terms of correct dynamic coupling and b.c. discretization accuracy are also avoided

ADCIRC Domain/Grid Design

- Grid Resolution should be provided where response gradients are high
 - Coarse grids in the deep ocean
 - Refined grids on the continental shelf
 - Highly refined grids in inlets, estuaries, rivers, canals and flood prone overland regions

Computational Efficiency

- Highly Efficient Code → very large domains are possible
- Loop-level Optimization
- Temporal Fully Implicit Time Marching available
- ADCIRC is available in single thread and parallel versions that yield the same answers to machine precision
- Spatial Parallel Computing
 - Domain Decomposition
 - Distributed Memory
 - MPI based communication

ADCIRC – Domain Decomposition

Parallel Efficiency – Cray T3E

Parallel Efficiency – IBM SP

ADCIRC Development

- DG algorithm development
 - Discontinuous Galerkin (DG) for Hydrodynamics, Transport and Sediment Transport is under intensive development
 - DG will be fully incorporated as an option in ADCIRC
 - Beta versions will be available by the end of this FY

DG Properties

- DG in its simplest form is very similar to Finite Volume on an unstructured variably spaced grid
- DG is elementally mass conserving
- DG is very robust in its lowest order implementation
- p and h refinement are being implemented
- Local nonconforming grid refinement is possible on the fly

ADCIRC Development

- Multi-algorithmic implementation is under development
 - ADCIRC will work simultaneously with DG and GWCE based CG algorithm
 - Optimal algorithm will be selected for appropriate portions of the domain
 - Not one algorithm is optimal for all hydrodynamic problems

 Use the best algorithm for the local flow

ADCIRC Development

- 3D Model Development
 - Experience base with 3D barotropic is developing
 - Testing 3D diagnostic baroclinic pressure gradient in level coordinates, rest in stretched sigma coordinates
 - 3D wave/current interaction
 - 3D prognostic baroclinic (in parallel)
- Data Assimilation
 - TRUXTON inverter
 - IOM NSF ITR

Summary

- ADCIRC sophisticated, robust hydrodynamic model with many options
- Continuously advanced with new
 - Basic algorithms
 - Computing paradigms
 - Physics
 - Features
- Well-positioned to simulate a wide-variety of hydrodynamic problems
- For more information, see the ADCIRC web site:

www.marine.unc.edu/C_CATS/adcirc